

Small Inventories – Pre-disposal Considerations

Rebecca Robbins Pre-disposal Team Leader Waste Technology Section

Background

- Many MSs have small volumes of waste generated from medical, research and industrial applications of nuclear energy

 Often referred to as 'institutional waste'
- However, many of these MSs do not have the established radioactive waste management capabilities to characterize, process, store and dispose of these small inventories

What is considered a small inventory?

Waste Generation Country Case

Tupoo

Case	Typical Nuclear Activities
А	Radioactive waste is generated from nuclear power plants, front end and back end fuel cycle facilities, wide use of nuclear R&D facilities, and extensive nuclear applications in industry and medicine.
В	Radioactive waste is generated from nuclear power plants, wide use of nuclear R&D facilities, and extensive nuclear applications in industry and medicine. No fuel cycle facilities.
С	Radioactive waste is generated from limited use of nuclear R&D facilities, research reactor, limited use of nuclear applications in industry and medicine. No nuclear power plants, no fuel cycle facilities.
D	Radioactive waste is generated from limited use of nuclear applications in industry and medicine. No reactors, no fuel cycle facilities, no nuclear R&D.
Е	Only NORM waste is generated from limited industrial applications, such as mineral extraction or oil and gas drilling. Ref: NW

Waste Generation Country Case

Type	
Case	Typical Nuclear Activities
А	Radioactive waste is generated from nuclear power plants, front end and back end fuel cycle facilities, wide use of nuclear R&D facilities, and extensive nuclear applications in industry and medicine.
В	Radioactive waste is generated from nuclear power plants, wide use of nuclear R&D facilities, and extensive nuclear applications in industry and medicine. No fuel cycle facilities.
С	
	Radioactive waste is generated from limited use of nuclear applications in in industry and medicine. No reactors, no fuel cycle facilities, no nuclear R&D.

Waste Generation Country Case

Type		
Case	Typical Nuclear Activities	
A	Radioactive waste is generated from nuclear power plants, front end and back end fuel cycle facilities, wide use of nuclear R&D facilities, and extensive nuclear applications in industry and medicine.	
С	Radioactive waste is generated from limited use of nuclear R&D facilities, research reactor, limited use of nuclear applications in industry and medicine. No nuclear power plants, no fuel cycle facilities.	
D	Radioactive waste is generated from limited use of nuclear applications in industry and medicine. No reactors, no fuel cycle facilities, no nuclear R&D.	
E	Only NORM waste is generated from limited industrial applications, such as mineral extraction or oil and gas drilling.	

IAEA perspective: Typical Scenario 1

- Current annual arisings
 - 10s DSRSs (cat 3-5)
 - Cat 1-2 sources recycled/returned
- Larger stored inventory of conditioned and non-conditioned DSRSs
 - Category 1-5 (usually in their original shielding)
 - Partial/full inventory (some key parameters may be missing)
 - Conditioned packages which may or may not meet current safety standards

IAEA perspective: Typical Scenario 2

- Current annual arisings
 - 10s DSRSs (cat 3-5)
 - Cat 1-2 sources recycled/returned
 - 1-2 drums of institutional type (compactable) waste
 - A few litres of liquids
- Legacy trench-type storage facility
 - Incomplete inventory
 - Mix of conditioned and non-conditioned DSRSs and waste

Other Typical Small Inventories

NORM

NORM residues from processing groundwater Contaminated pipes and vessels

Mining and mineral processing waste

Facility Decommissioning

Surface contaminated metal and concrete

Relatively small volumes of aqueous and organic radioactively contaminated waste

Contaminated soil and/or land

Reactor Decommissioning Ion exchange resins Spent fuel pond water Sludges Large components Activated components Surface contaminated metal and concrete Contaminated soil and/or land

Small Inventory Challenges

Small Inventory Challenges cont.

No single responsible waste management organization

Incomplete inventory^{*}

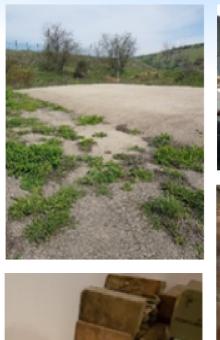
No waste processing and storage facility

Multiple sites with small volumes

Lack of know how to source 'fit-forpurpose' cost effective waste management solutions

Low volume annual waste arisings with one/two challenging legacy waste inventories/ facilities^{TC}

Reactor or facility decommissioning^{*}


"Legacy" and "one-of-a-kind" waste inventories*

*Ongoing IAEA activity ^{TC}IAEA TC projects

'Legacy Waste'*

Waste from past activities includes:

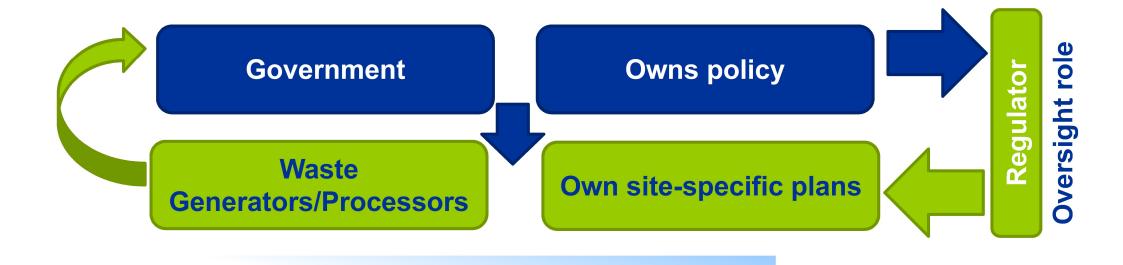
- Waste that does not have an identified route for disposal
- Waste that does not have a predisposal concept and/or defined waste acceptance criteria
- Waste that is conditioned, stored or disposed of in a form that does not comply with the current regulatory requirements

*Ongoing IAEA activity – publication on Management of Waste from Past Activities, wiki

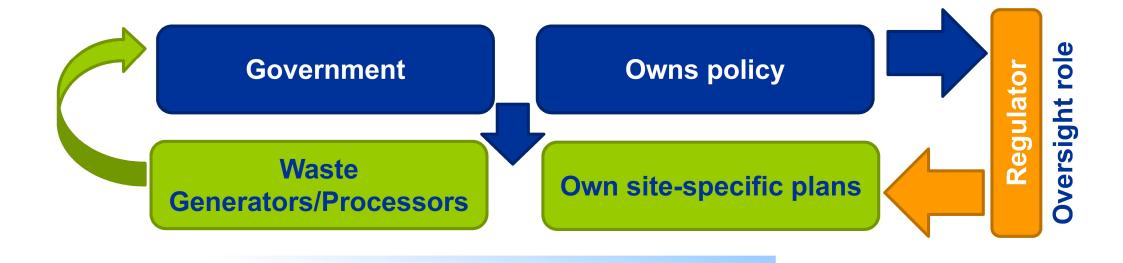
RWM in the Future.....

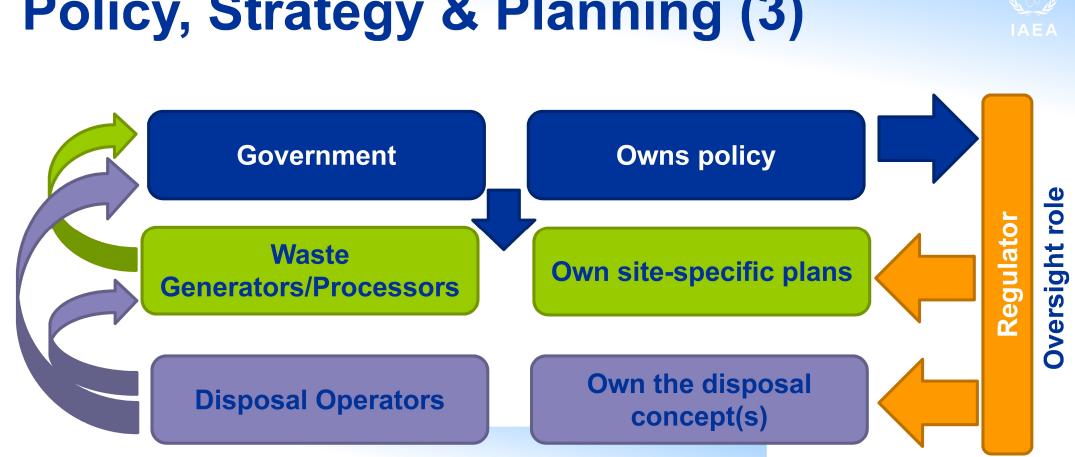
- Life-cycle radioactive waste management planning begins before any waste is generated
- Waste hierarchy principles are adopted (avoid, minimize, recycle, reuse, dispose) to minimize waste going to disposal
- End-of-life plans are in place for all new sealed sources, (in A attended to the sealed sources, of the sealed sources, of the sealed sources, of the sealed sources, of the sealed sources, attended to the sealed sources, of the
- All waste is characterized at the point of generation

IAEA Predisposal Vision

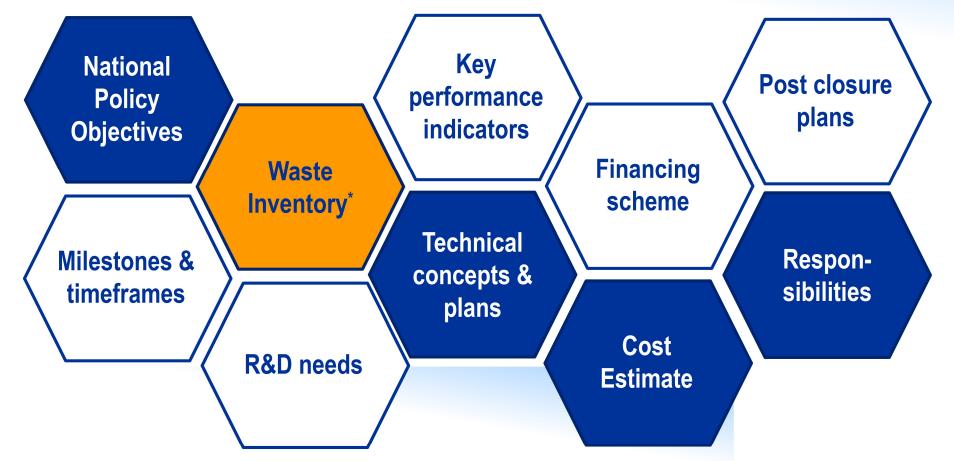


Key is **identifying viable pathways** to move all waste towards disposal while maintaining **flexibility** for future decisions regarding the end-point disposal is preferred but if not feasible at this time, storage of well characterized, stable waste packages in a way that maintains flexibility to comply with future disposal concepts

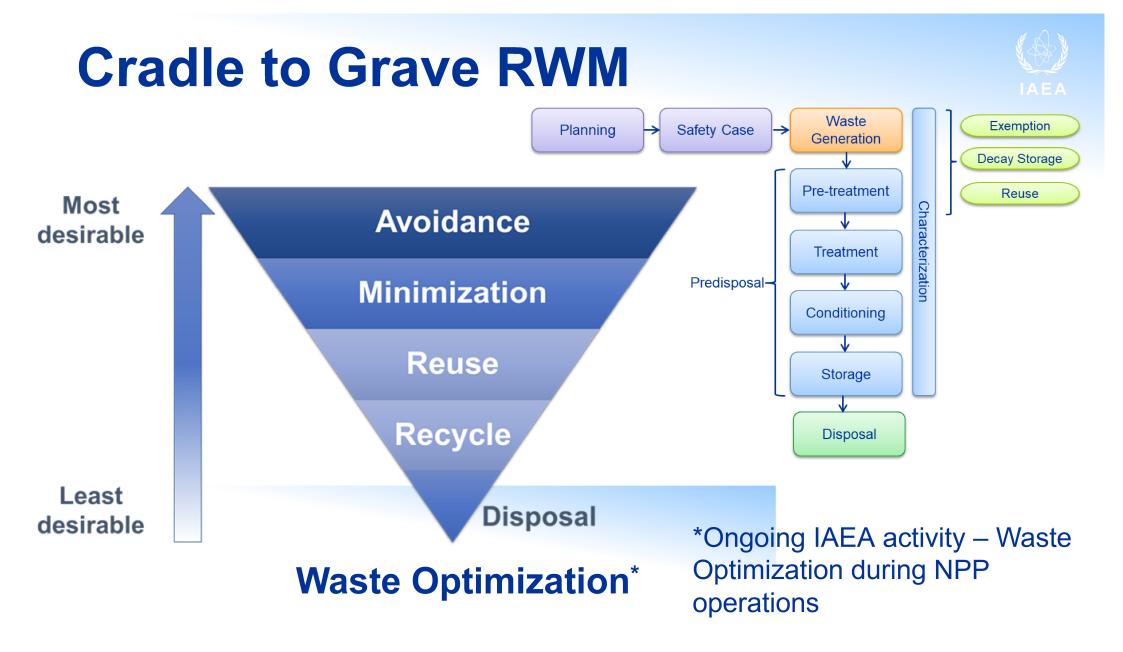



Small Inventory Member States (1)

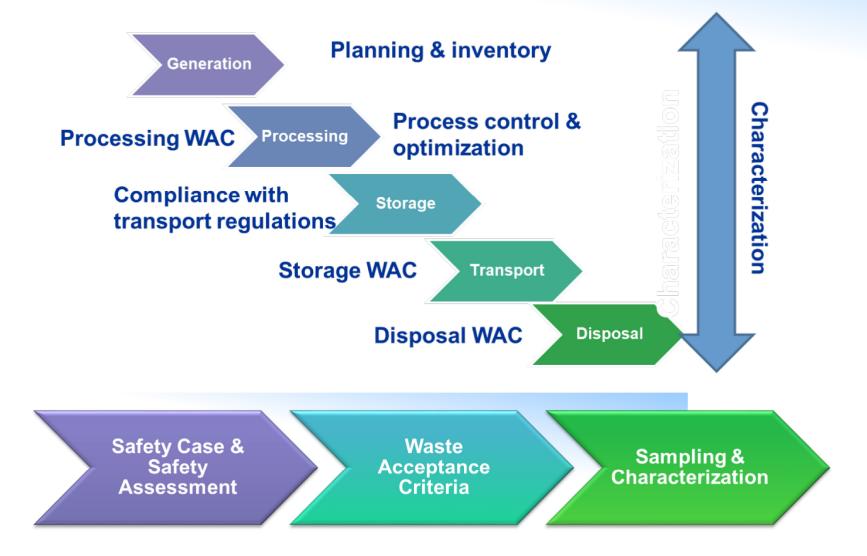
Small Inventory Member States (2)



Policy, Strategy & Planning (3)


Elements of an Integrated RWM Plan

Radioactive Waste Management Plan



*Ongoing IAEA activity – publication Establishment of Waste Inventory

Role of Characterization in RWM

Opportunities for Cooperation: Waste Acceptance Criteria

Comparison and benchmarking of existing waste acceptance criteria

Disposability assessment and analysis of approaches to moving to storage in the absence of WAC^{*}

Good practices/lessons learned inventory/waste acceptance criteria

Prohibited constituents, minimization toxic components (steel vs. lead), organic materials, liquids etc.

*Ongoing IAEA activity – publication on Waste Acceptance Criteria

Opportunities for Cooperation: Implementation

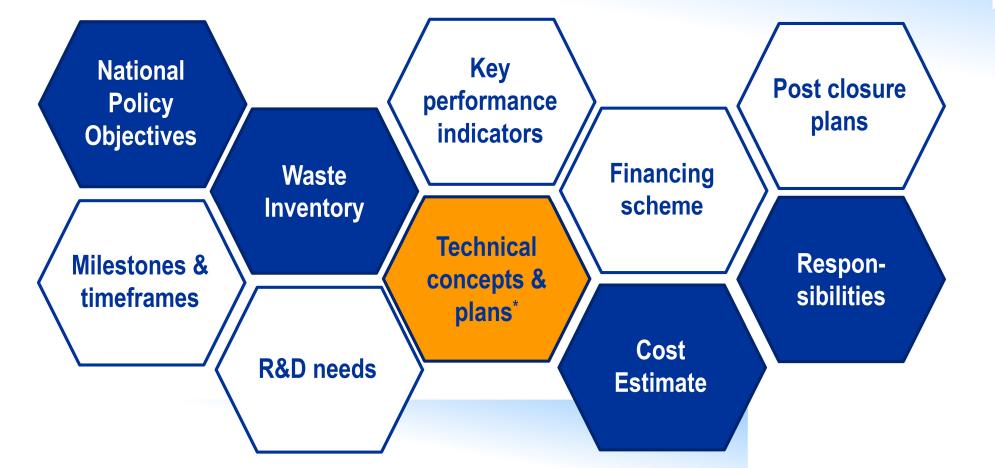
- Training, mentoring, secondment^{TC}
- Ageing management strategies and practices for stored waste
 - Including strategies for maintaining trained human resources during long-term storage
- What services do you 'buy in' vs. maintain 'in house'
- Sharing of predisposal good practices*
 - at least to the level of an 'intelligent customer'
- Information/Alnowledge main agement over long periods of * IAEA predisposal Handbook series

Opportunities for Cooperation: Characterization

Characterization methods and techniques to establish inventory

Characterization methods and technologies for clearance and exemption

Characterization methodologies and approaches to meet WAC (radionuclides & hazardous components)*

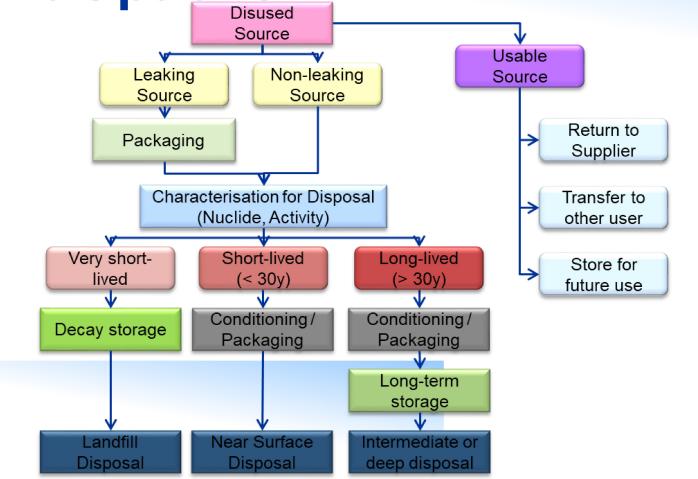


Compilation of characterization services

*Ongoing IAEA activities – "Characterization Handbook", LABONET network and RWM wiki articles on characterization methods, technologies and sampling

Elements of an integrated waste strategy

*Ongoing IAEA activities – publications – Predisposal Handbook series, Integrated Waste Management Planning

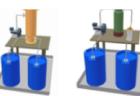

Waste Processing/Storage Options

- On-site facilities situated at the location where the waste is generated
- Centralized facilities
 - Involves transportation of waste
 - Benefits from economies of scale
- Modular facilities*
 - Processing/storage modules developed off-site
 - Alternative to centralized facilities
- Mobile units^{*}
- Turn-key solutions^{TC}
- International waste processing

*Existing IAEA guidance TC IAEA Technical Cooperation Projects

Disused Sealed Radioactive Sources

Centralized Processing & Storage Facilities Nuclear Engineering Siebersdorf

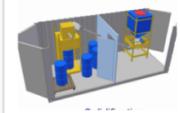


Photos courtesy of NES, Austria

IAEA

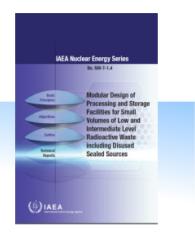
Modular Designs for Small Volumes

- Ideal for small waste quantities
- Flexible size & configuration
- 11 pre-designed modules that can be assembled & factory-tested off-site before being transported to waste processing/storage site
- Processing modules available for:
 - High & low volumes of liquid waste
 - All types of solid waste:
 - compactable & non-compactable
 - Sludges, ion-exchange resins, DSRS
- Can be **combined** to form an integrated process scheme
- Storage modules are available for all types of LLW packages/DSRS and sizes of inventory



Ion exchange

Filtration

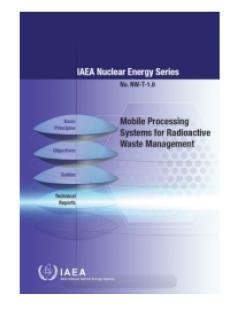


Cross flow filtration Reverse Osmosis

Mobile Processing Systems

Key benefits:

- Lower capital cost
- Alternative to centralized facilities
- Easy replacement
- Shared use
- Useful for small volume streams
- Potential to cross borders
- Disposability
- Ability to schedule processing campaigns

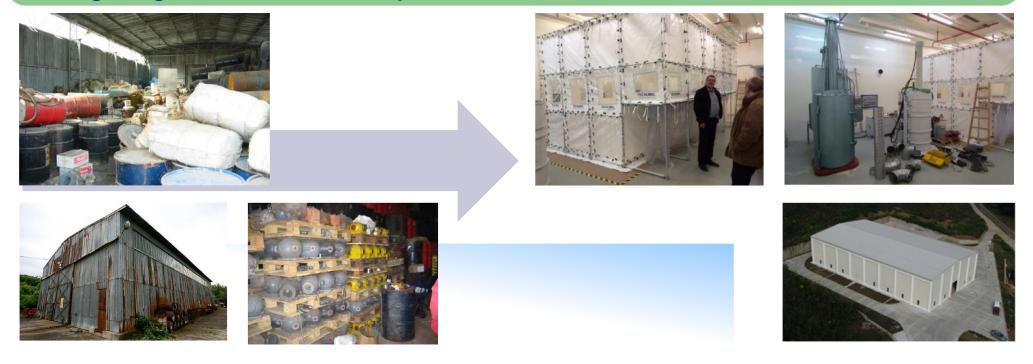

Common uses:

- Smaller volume, problematic waste streams
- Accident/urgent response situations
- Decommissioning & remediation

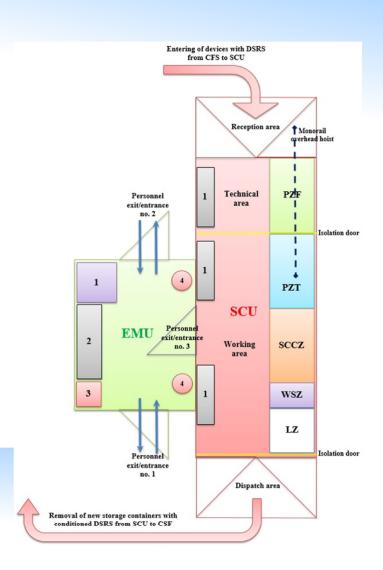
Unit for drying solids (IX resins, sludges, concentrates)

Cat I-II DSRS conditioning

Mobile Hot Cell (MHC) – used to remove and condition high activity sources in devices


- Used in all TC regions, nationally, and regionally
- Sources from both medical and industrial applications
- Following MS request
 - MHC shipped to location where disused sources have been assembled
 - Trained operators use remote manipulators to repackage sources into long term storage capsules
 - Capsules placed in shielded long term storage containers
- Training courses provided for operations and management of sources

Design/build contract with on-the-job training



Through the IAEA Department of Technical Cooperation, the Agency facilitated a multimillion dollar project between the Agency, the European Union, the United States, the Serbian government and a radioactive waste management contractor to design a retrieval & processing facility. The stored waste will be processed & moved to the new storage facility by the contractor working alongside the licensed site operator.

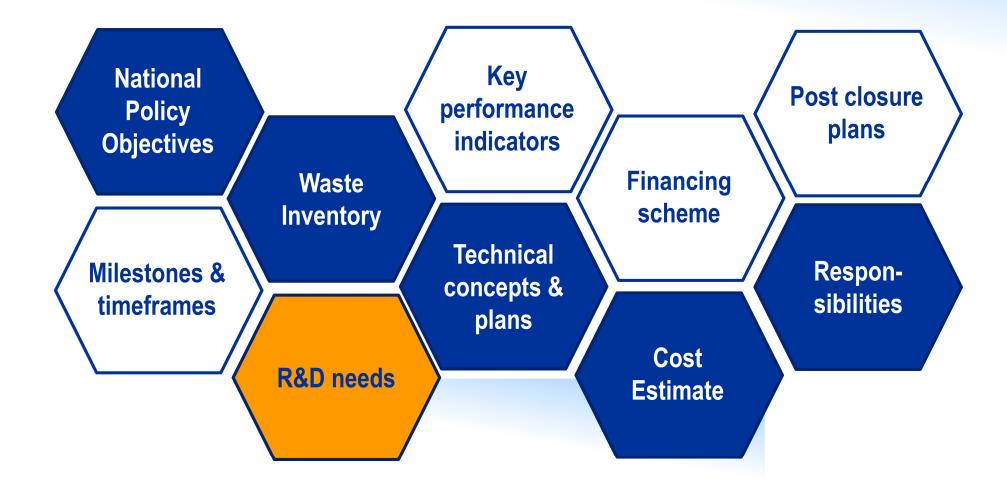
Turn-key Contract^{TC}

- Contract let for design/build of predisposal facilities at counterpart's site
- Waste and DSRS processing performed by local TC Ongoing TC national projects

International Waste Processing

Opportunities for Cooperation

- Mapping available waste processing services within Europe
 - What is available
 - What organizations are willing to share service
 - Gaps opportunities for 'new company'
 - People
 - Technologies
 - Services
- How to manage peaks and troughs in resource needs



Opportunities for Cooperation

- Regional 'processing hubs'

 DSRS: dismantlement & conditioning*
- Catalogue of qualified available services
 - Mobile services
 - Characterization
 - Processing
 - Design engineers small companies
 - E.g. shielding calculations, safetyccases seg safetyctivity assessment, pre-feasibility studies
- Reference designs

Elements of an integrated waste strategy

Small Inventory Challenging Waste Types

- Radioactively contaminated organic liquids
- Previously conditioned waste
 - Cemented waste and DSRSs
- Decommissioning
 - Be reflectors, activated aluminum, irradiated graphite
- Ion exchange resins
- Cellulosic and organic material (e.g.PCBs)
- HEPA filters NORM contaminated pipes and

Conclusions

- Principle steps of pre-disposal management are independent of the size of the waste inventory
 - Scalable technical solutions exist
 - Options for accessing technologies/solutions are becoming more established
- Strong driver for national and international cooperation & sharing in the area ofpredisposal
- IAFA continues to provide guidance targeted

Thank you!

